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ABSTRACT

This Semiannual Technical Summary Report covers the period

1 April through 30 September 1980. It describes the signifi-

cant results of the Multi -Dimensional Signal -Proce ssing Pro-

gram in the areas of image modeling, image segmentation and

classification, advanced digital filter implementations for im-

age processing, and iterative algorithms for image restoration

and enhancement.

The work was carried out with support of the Department of the

Air Force; a part of this support was provided by the Rome Air

Development Center.
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RADC MULTI-DIMENSIONAL SIGNAL-PROCESSING

RESEARCH PROGRAM

1. INTRODUCTION AND SUMMARY

The Lincoln Laboratory Multi-Dimensional Signal-Processing Research Program was

initiated in FY 80 as a research effort directed toward the development and understanding of the

theory of digital processing of multi-dimensional signals and its application to real-time image

processing and analysis. Specific areas of interest include advanced filter and processor archi-

tectures for image enhancement, and the modeling of image data for segmentation, classifica-

tion, and detection. This report discusses technical accomplishments over the last six months

in these two areas.

Segmentation and classification are important aspects of the automated analysis of aerial

reconnaissance imagery. Our work on segmentation and classification, discussed il Sec. 2 of

this report, has focused on the development of statistical models and related algorithms for

segmentation/classification. The models, which are based on white-noise-driven linear filters,

permit development of the joint probability density function oz " kelihood function for the image.

With an expression for the likelihood function in hand, segmentation can be regarded as an

estimation problem for the image regions. Maximum likelihood estimation leads to a simple

segmentation algorithm but one that yields generally unsatisfactory results. The modeling of

region transition statistics as a Markov chain allows formulation of the maximum a posteriori

(MAP) estimation problem; a solution of the MAP equations can be obtained through an iterative

procedure. The MAP approach was found to produce much more satisfactory results. Examples

of image segmentation are shown for texture images and for aerial photographs of rural areas.

The discussion in Sec. 3 on the enhancement and filtering of aerial photographs represents

a coalescence of work in two different areas, the development of an iterative implementation for

2-D non-causal rational filters and the investigation of techniques for restoring images that have

been blurred by a known blurring function. We have found that an iterative restoration algorithm,

which is related to the iterative implementation developed previously, works well in removing

the effects of blurring.

2. IMAGE MODELING FO) SEGMENTATON AND CI.ASSIFICATION

2.1 Introduction

The problem of detecting objects in structured backgrounds, such as terrain, is of interest

in many applications. Since the image in which the detection is to take place generally consists
of many different types of background regions with irregular boundaries, segmentation of the

background into regions with homogeneous structure can be an important prerequisite to detec-

tion. Further, the classification of background regions is of interest since it may reduce the

number of areas that need to be considered for detection of a particular type of object.

During this reporting period, work has focused on the development of statistical models for

natural terrain and on the generation of segmentation and classification algorithms based on

these models. The models are derived using stochastic filtering concepts and are described in

the following subsection; the segmentation and classification algorithms are described in the

next two subsections. Examples of segmentation results for texture and terrain images are

shown and discussed.



2.2 Modeling of Texture and Terrain Images

Images of interest here are assumed to consist of a number of connected regions each of

which contains a texture or terrain of a fixed type. A model for the image can be developed as

follows: Within a given region, the image is represented by the output of spatial linear filter

driven by white noise (see Fig. i). If the probability density function for the white noise is known,

Fig. t. Model for image consisting of two region types.

then the multivariate probability density function for the set of all points Fi within the region R i
can be computed. Denoting this quantity by Pk(FkIRi) where k is the texture type, we can write

the multivariate probability density for the image, conditioned on a set of regions 1i, ..., RN as

N

P(FIR1 ... RN) = rj pki(FiRi) ()

If a causal (quarter-plane) recursive filter and Gaussian white noise are used in the model,

then the expression for minus twice the log of the density function is approximatelyt

- \1 2-2 lnPkil(FIR i ) ( 2j )-- + Ina +ln 2 (2)

n,mt Ri I ki

where n and m are coordinates of points in the region, 2 is the white noise variance and

Ek(n, m) is given by 
'

Ekn

I J

Ek(n, _k) [ F(n - i,m -j) - MkJ (3)
i=O j=0

Here M is the mean of F, ak) , and the remaining a. are the coefficients of the recursive
ek  00 tfilter. Under these conditions, Ek can he interpreted as the error in linear prediction of the

image using the filter of class k. Equation (1) and its explicit realization IEq. (2) 1 are the key

to the segmentation and classification algorithms described below. Generalizations and further

details of the modeling are given in Ref. 2.

2. 3 Segmentation as an Estimation Problem

Given an image F, we can regard Eq. (1) as a likelihood function in the parameters N and

Hi. A maximization of Eq. (1) with respect to these parameters yields a maximum likelihood(Ml,)

I The expression neglects boundary effects (see Rfef. 2).
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estimate for the regions. In view of Eq. (2), maximization of Eq. (1) is equivalent to assigning

each point (in, m) in the image to a region Hi (of type k i ) such that the term in brackets is mini-

mized. Specifically, for the case of two region types, we are led to the condition

22
2 + n o ' 1 n I  4

aI oI'

The double inequality sign indicates that a point (n, nil is assigned to region 0 if the left-hand

expression is less than the right-hand one and assigned to region I if the opposite is true.

Sinve the ML. estimate assigns points to texture types without regard to the assignments of

adjacent points, the procedure tends to produce a poor estimate for the regions. Figure 2(a)

shows a composite of two random textures in three connected regions. In this example, there

is no difference in the mean gray level for the two types of textures. Figure 2(b) shows the MI.

segmentation obtained by assigning pixels to black or white levels (texture types 0 and 1, re-

Spectively). .\lthough the outline of the true regions is discernible to a human observer the pro-

cedure, has in fact generated many false regions.

A better procedure is to use some form of Bayes estimation. 1'rom out- arcgunients with

respect to the ML estimate, we can observe that a segmentation A? 1,R2 ..... HN of the irriage

is completely equivalent to an assigment of the pixels to 0 and I. We shall refer to such an)

assignment for a point (n, in) as its "state" a and let that state be stochastically dependent on

the values of states i a surrounding region Sn 1. In particular, following Kaufman ut al., we

assume that the states form a Markov chain with transitin probabilities P1r[S7,1 S n , ] . BY

combining Eq. (1) and the transition probabilities, and applying Bayes' rule, we can form the

posterior probability of the state assignment. Maximizing this expression leads to a MAt' esti-

mate for the regions. By taking logarithms and eliminating constant terms, we find that aix

equivalent statement of the MAlI estimation problem is to minimize the expression

E (n, m)
(T Z - s - 2 In 'rls,1 ISn 1

- 2 n(S

(n,m) S n,n, xr

over all choices of the Sn. Specifically, in the two-class case, we must satisfy the conditions

Eo (n,ni) 2 0 1: 2(n,nl,
+ Ino - 2 ln Pr(0jSnI, 1 2 + In 1  - 2 lnlr) I IS Jn,n) 00

- I 1 G1I

The state interdependence imposed by the Markov model is clear from Eq. (b), but it also renders

a direct solution impossible in practice. However, it is possible to set up an iterative p rxx,-

dure where, beginning with the MI. state assignments. oric fixes the S and uses Eq. (6) to ob-nx,nx

tain an updated set of state assignments. rhe updated states are then used for the x.1 ?th,,

next iteration.

For the results reported here, the state was taken to he dependnt oni values in a q- p 'i- pxel

square region centered around the point (n, ni), and the transition probabilities were takexn to ie

proportional to the number of I's or O's present in that region. Figure 2(x) shows the results of

this procedure after 16 iterations. Since there is an inherent ambiguity in the estimation of the

region boundaries proportional to the size of the support of the autoregressive filters, the. edges

are somewhat rough. Smoothing with a small-kernel linear filter produces the result shoiwn in

3
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1b)

Cc) (d)

Fig. 2. Segmentation of a texture image: (a) 64 x 64 pixels, (b) Nil. segmentation,
(c) MAP segmentation, and (d) MIAP segmentation after smoothing.

a) (b)

Fig. 3. Aerial photogzraphs of natural terrain (1I XR 128 pixels).
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Fig. 2(d). The three regions have been identified well except for one small false white area in

the upper left corner.

The MAP region estimation procedure was also applied to the aerial photographs of terrain

shown in Fig. 3. The goal here is to segment the images into regions of trees and fields without

further segmentation with respect to tree or field characteristics. Although both images shown

in Fig. 4 represent similar types of data, there are some significant differences between thc in

ages particularly with respect to average gray level of the two classes. However, for- pUrposk*s

of these experiments, no normalizing procedures were applied to the data. The filter coeffi-

cients for the segmentation and classification were estimated from data in the two white bx.,

in Fig. 3(a). The MAP algorithm was then applied to the entire images. Figure 4 shous il ,

sults of region estimation for the two images. No smoothing of the edges was piVfornitd 1,..

Figure 4(a) shows generally solid identification of the two region types. Figure 4)) sliw, ,

sistent identification of the fields and most of the trees with some problems occurring in t.,n

areas that are lighter in tone or show longer spatial autocorrelation characteristics.

i -.

(a) ib)

Fig. 4. iAP segmn entation of Fig. 3 inmageks.

As a follow-on experiment, the upper left-hand corner of the image il, Vig. ;l I 1

segmented to separate the larger trees from the smaller ones. In the cnlarged i. ti,,ii ',

in Fig. 5(a), it is more difficult to visually identify the image as that of ti'c(,s hut th , i

able differences in spatial correlations of the textures within the imag,, that aiv not il,,, t1w.

seen in the texture image of Fig. 2. The segmented result shown in Fig. "(b) , )11( ,dh %th t,

observers' visual segmentation of the tree image and also with the details visihl, i tt, t )ir ii.:I

aerial photograph prior to digitization (not shown). This suggests that terrain ,,,u pilttiOi,

might well be performed in a layered, hierarchical manner starting with ia segientatii,, lilt,

gross categories and proceeding to increasing levels of detail as required.

2.4 Classification of Presegmented Images

In the preceding section, the goal was t,, segnt ,n n image int, known cat 'gries and tht

sekmentation and classification proceeded concurrently. In sonie applications, it may hi requi I,

Ii_



Fig. 5. Segmentation of large and small trees: (a) section
of tree and field image and (b) MAP segmentation.

to classify an ima~ge consisting of a single type of texture or terrain into one of a set of known

categories. Such presegmented but unclassified images may arise as the output of a view of a

camera or sensor to an area known to be of homogeneous structure. In this situation, the clas-

sification can be addressed in terms of statistical hypothesis testing. Once again, the model

and likelihood functions described in Sec. 2.2 play a key role. Classification of the image can be

carried out as a fixed sample size test involving the entire set of pixels or as a sequential test

using some contiguous subset of pixels. The sequential test may be useful, for example, if the

image is being developed in a scan mode and time and resources for classification must be care-

fully allocated. In either case, the likelihood function is developed in a recursive manner. Addi-

tional details of this procedure can be found in Ref. 2.

3. ENHANCEMENT OF AERIAL PHOTOGRAPHY

3.1 Introduction

In this research area, we have devoted our efforts to enhancement and restoration of aerial

photographs, and, in particular, the sampled images recently received from RADC/IRRE. Our

studies can be categorized in the following way:

(a) Generalizations and applications of the iterative implementation of 2-I)

digital filters.
1 t

(b) A theoretical study of convergence of signal reconstruction algorithms

such as phase-only or magnitude-only reconstruction, and band-limited

extrapolation.

(c) Estimation of the phase of the Fourier transform of an image for image

restoration.

In the first area, we have extended the original formulation of iterative filters so that anly

stable 2-D rational transfer function can be implemented by an iterative filter. That is, we have

extended the class of filters that can be implemented iteratively. This generalization has led to

some interesting filter structures for accelerating convergence. In particular, trade-offs be-

tween filter complexity and speed of convergence have been empirically demonstrated.

In a more practical vein, we have applied iterative filtering to the problem of image restora-

tion, and in particular, to the problem of image deblurring. In addition, we also have performed

6



some preliminary studies and experiments on the use of iterative filters in cloud removal, where

cloud cover is modeled by both gray-scale modification and blurring due to light scattering.

In the second area of interest, we have formulated a general convergence proof, applicable

to a particular class of signal reconstruction algorithms. Although our development centers on

two specific examples, band-limited extrapolation and phase-only reconstruction, our approach

is general and may be applied to other iterative algorithms that satisfy the same assumptions.

Our technique yields the first proof of convergence for the phase-only reconstruction algorithm

and may be easily generalized to multi-dimensional signals. Furthermore, the method of proof

can be used with nonlinear constraints such as positivity and with modifications for accelerating

convergence. Our studies also have led to some interesting observations on the relationship be-

tween iterative filters and iterative reconstruction.

The final area of investigation is phase estimation, and phase determination from intensity

measurements. This work can be classified as follows:

(a) Determining the phase of a complex wavefront from multiple intensity

measurements.

(b) Estimation of the phase of an image in the presence of additive noise.

The first approach is useful when a coherent optical imaging system yields a misfocused

image. The second area is applicable in enhancing images degraded, for example, by quantiza-

tion noise or film graininess.

3.2 Generalizations and Applications of Iterative Filters

The original motivation fo' an iterative implementation of 2-D digital filters was to build up

a complicated impulse response from simple convolutions with impulse responses of finite ex-

tent. Such an implementation is well suited to highly parallel array architectures. Another moti-

vation is the implementation of non-causal rational transfer functions. Image restoration, for

example, often requires a non-causal inverse filter.

The iterative filtering procedure I can be viewed as a ist-order feedback loop, where a

filtered version of the input image is added to a filtered version of the result of the previous

iteration. A generalization of this structure can be derived in a way similar to the original

derivation.

3.2.1 A Generalized Formulation

A 2-D rational frequency response can be written as

H( 1 . W2 ) = A (W I w2 )/B(w1 ' V 2 ) (7)

where A(wj, w2 and B(wi , , 2 ) are trigonometric polynomials. In generalizing the original ite'a-

tion, we define the function

C(wt, wZ) = t - w, w2) B(wl, w2) (8)

where X(w,2) is a trigonometric polynomial. If we define X(u)t,u 2) as the spectrum of the fil-

ter's input signal x(n 1 , n ) and Y(wl, 2 ) as the spectrum of the filter's output signal y(n 1, n 2 ),

then from Eqs. (7) and (8) we can derive an implicit relation for Y(w 1 , cc2 ):

Y(11)A(W1 Uw2 ) AMwt,w 2 ) X(w 1 , wz) + C(W1 , W2 ) Y(W 1 ,,,u) .(9)



This implicit formula suggests the iterative formulation:

y i (w 2 w= X(w0, 2 ) A(0i, w 2 ) X(wi, w 2 ) + C(03,w 2 ) YiI(wt.W 2 ) (O)

The iterative solution will converge to the desired filter output providing

1c(wiw2)1 < I(,

In fact, unlike with the original iteration [where A(w , w) = 1, it is straightforward to aemon-

strate that this condition can always be made to hold with an appropriate choice of X(wj, w2 ).

For example, when

A(w03t w2 ) aB*(wi, w2 ) (12)

where a is a scalar such that

0 < a < 2 max IB(u.t,0 2)1 
2  (13)

then, C(w 1 ,w 2 ) < t for all (w1,w 2 )"

3.2.2 Methods of Accelerating Convergence

Equation (13) suggests a means of accelerating the convergence of the iteration given by

Eq. (11). Since the convergence rate increases as IC(0 1 ,w 2 ) approaches zero, we wish to choose

the parameters of (w,1 , w32 ) so that

Ic(wtww2) =I - w(,0Z) B(wl, w?) 0 (14)

or equivalently

X(w, I W2) 1- /B(w1t W32) -(i 5)

If we consider X(w,.w 2 ) to be the frequency response of a 2-D filter, we can drive C(wiw 2 )

closer to zero by allowing the spatial extent of that filter's impulse response to grow. Thus, a

trade-off exists between filter complexity and convergence rate.

From a slightly different point of view, suppose we want to implement the filter I/B(03, 02)

and suppose A(a, w2 ) is a poor approximation to I/B(wt , w2 ). Then, using the iteration given by

Eq. (11), we can improve the result of the filtering operation to achieve a better realization of
t/B(03t , w3).

3.2.3 Application to Image Deblurring

Let's now assume that an image i(nj , n.) has been blurred by a finite extent Gaussian-shaped

blurring function b(n t , n 2 ) to give a blurred image x(n 1 , n2 ). In the frequency domain, we have

X (w t , 032 = [( oW i , w 2) B (w , w2
)  (t 6)

The desired image is, of course,

Y(wi' W2) = '(w 1 I w2 ) z X(wi Iw 2 )/B(wt, w2 ) (17)

and thus the filter H(wj, w2 ) to be implemented is

H(wl,w/) = IB(w 1 , 2 ) (18)

An original RADC image and its artificially blurred counterpart are shown in Fig. 6.

8
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(a) (b)

Fig. 6. (a) Original and (b) blurred RADC image.

Since B(wl, w,) takes on very small values in high-frequency regions, H(W, w2 ) will take on
exceedingly large values in these regions, and consequently will be very sensitive to any noise.
The result of applying a direct inverse filter to X(wt, wZ) is shown in Fig. 7 along with the blurred
image. Note the severe degradation due to high-frequency sensitivity.

a (b)

Fig. 7. (a) Blurred RADC image and (b) reconstruction by direct
inverse filtering.

The iterative approach, on the other hand, slowly builds up the desired inverse filter and
seems to avoid the sensitivity problem inherent in the direct approach. Figure 8(a) shows a
blurred image and (b) illustrates the restored ima!'e after 20 iterations with A),1"2 ) set equal
to a constant. When (w1 ,w 2 l is allowed to vary (a filter of length equal to that of B(w 1 , 2 ) was

designed), fewer iterations were required to obtain a slightly better restoration. Figure 9(a)
depicts the blurred image and (b) the restored image after only 10 iterations when the variable
A{(W w2 ) was applied. This example demonstrates the trade-off between the spatial extent (or
complexity) of X(WIU)Z) and the convergence rate.

9
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(a) (b)

Fig. S. (a) Blurred RADC imiage and (b) reconstruction by iterative
filtering width fixed X and 20 iterations.

(a) (b)

Fig. 9. (a) Blurred H ADC ixnaoe and (b) r econstructtion by iterative
filtering with variable A and] 10 iterations.

I 0
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3.2.4 Extensions

The theoretical and empirical results of the previous subsections have led to a number of

interesting possible extensions. First, under certain conditions, the generalized formulation

can be shown to yield the phase of the desired (filtered) image after only one iteration. Since,

for a certain class of images, all the information lies in the phase, we might conclude that after

only one iteration, we have restored the desired information. This phase information, therefore,

may be useful in increasing the convergence rate or perhaps in reducing the noise buildup as the

iteration proceeds.

Another important insight we have recently made is that the iteration of Eq. (I ) can be

slightly modified to take on the appearance of the more traditional iterative signal reconstruction

algorithms such as the Gerchberg 5 
and Van Cittert

6 
algorithms. As a result, it is possible to

view an iterative filter as an iterative reconstruction algorithm so that procedures used within

these more traditional approaches can be applied to our problem. For example, we are consid-

ering imposing finite extent and positivity constraints on the output of each iteration.

3.3 Convergence of Iterative Signal Reconstruction Algorithms

Imposing finite extent and positivity constraints, as described in the previous subsection,

leads into issues of the convergence of a modified version of the iteration given by Eq. (t).

More generally, there exist many iterative procedures for signal reconstruction which impose

such constraints in the space domain and also makes use of known information in the frequency

domain. For example, often only the low-pass region of the spectrum of an image is given. In

this case, we would attempt to retrieve resolution by iteratively incorporating the low-pass i-

formation in the frequency domain, and the known extent and positivity in the space domain.

Furthermore, if in addition to being low-pass filtered, the data are also degraded by a known

zero-phase blurring function, only the phase of the low-pass region may be accurately preserved.

An iteration had been developed for recovering the desired image from this phase information.
7 '

8

More recently, we have developed a proof of convergence for this phase-only iteration. The

generality of the proof allows for nonlinear constraints such as positivity and ruinilnum or max-

imum value constraints, and also encompasses a large class of iterative procedures which are

based on a nonexpansive mapping.

3.3.1 Nonexpansive Reconstruction Algorithms

The convergence proof relies on the property that an iterative reconstruction procedure is

based on a nonexpansive mapping. Heuristically, a nonexpansive mapping defined on a set of

images has the characteristic that when any two images, x and y, are operated on by the map-

ping, the resulting images are "closer" to one another in a mean-squared sense. l.etting d(x,y)

denote the mean-squared distance between two images, we say a mapping F is nonexpansive if

d(Fx, Fy) .. d(x,y) (19)

(Fx denotes the mapping F applied to the image x.)

The class of algorithms we have dealt with are strictly nonexpansive; that is.

d(Fx, Fy) < d(x,y) when x y

This strict nonexpansiveness property has been proven for both the phase-only reconstruction

iteration and also the band-limited extrapolation iteration.
4 

More generally, it is of major

II1
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importance in proving convergence of a class of iterative algorithms of the form

xk+ t = Fxk (20)

Moreover, it marks a significant difference from the contraction property which has been widely

used in the literature for proving the convergence of iterative procedures based on contraction

mappings.

3.3.2 Convergence of the Under-Relaxed Iteration

One important consequence of our approach is that convergence can be demonstrated for a

modified form o Eq. (20) (Refs. 4 and 9). For example, the phase-only iteration can be modified

to accelerate cnvergence by forming the "under-relaxed" version of the iteration given by

Xk+Il A xk +AFxk (21)

with appropriate choice of X. Eq. (21) converges faster than the iteration [Eq. (20)]. The gener-

alized iteration with variable ?, also can be put in the form of Eq. (21). As a result, the conver-

gence of certain accelerated versions of the iterative filter implementation may be proved.

3.4 Phase Estimation for Image Restoration

The final topic to be discussed involves techniques of determining phase information from

intensity measurements. We have derived a recursive procedure for generating phase informa-

tion from intensity measurements in more than one plane. The derivation is given in I-D, but

it is easily extended to 2-D. This solution has potential application to focusing a misfocused

image formed by a coherent imaging system.

Suppose a complex signal x(n) is the input of a linear space-invariant filter with impulse

response h(n). Then

y(n) = h(n-k) x(k) (22)

k

where y(n) is the filter output. When the magnitude functions ly(n) I and Ix(n) I are known, a re-

cursive algorithm can be derived for generating all possible sequences x(n) and thus all possible

phase functions associated with Ix(n) .

The recursive solution is described in the following way. Letting r and i denote " real and

imaginary part of:' respectively, we must solve the set of equations for x ,(n) and xI(n) given by

X (n) d r(n) - x (n) d (n) c(n) (2 3a)

Ix(n)I x (n) + x (n3

where x(n) =x r(n) + Jxi(n), and where dr (tn), di(n), and c(nj are functions of h(n), xtnl', , ytn).

and the previous values of x(n), i.e., x(m), m 0, t... n - 1. It is straightforward to see from

Eqs. (2 3a) and (23b) that there exist two possible solutions for x(n). We choose one of the two

possible values of x(n) and proceed to compute x(n + 1). Different selections of x(n) at each step

will result in different estimates of x(n), but sequences which are compatible with the known

magnitude functions Ix(n)I and iy(n) .

12~ - .-. . -~, -



One approach to removing this two-solution ambiguity is to assume the presence of a second

filter acting upon x(n), and that the magnitude of its output is known. With this second filter, a

necessary and sufficient condition on the two filters was derived for generating a unique solution

for x(n).

One potential application of the recursive solution is the reconstruction of a t omplex propa-

gating coherent wavefront from intensity measurements in two or more planes. The 2-I) filter

in this case represents the propagation phenomenon between planes.

The recursion can be used to generate the complex waveform along one plane. The 2-D fil-

ter can then be used to "propagate" coherent light to any other plane in space. l.'or example, if

an image along a particular plane is out of focus, the filter simulation can theoretically bring

the image into focus at some other plane.
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